Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.26.465865

ABSTRACT

Protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and associated clinical sequelae requires well-coordinated metabolic and immune responses that limit viral spread and promote recovery of damaged systems. In order to understand potential mechanisms and interactions that influence coronavirus disease 2019 (COVID-19) outcomes, we performed a multi-omics analysis on hospitalised COVID-19 patients and compared those with the most severe outcome (i.e. death) to those with severe non-fatal disease, or mild/moderate disease, that recovered. A distinct subset of 8 cytokines and 140 metabolites in sera identified those with a fatal outcome to infection. In addition, elevated levels of multiple pathobionts and lower levels of protective or anti-inflammatory microbes were observed in the faecal microbiome of those with the poorest clinical outcomes. Weighted gene correlation network analysis (WGCNA) identified modules that associated severity-associated cytokines with tryptophan metabolism, coagulation-linked fibrinopeptides, and bile acids with multiple pathobionts. In contrast, less severe clinical outcomes associated with clusters of anti-inflammatory microbes such as Bifidobacterium or Ruminococcus, short chain fatty acids (SCFAs) and IL-17A. Our study uncovered distinct mechanistic modules that link host and microbiome processes with fatal outcomes to SARS-CoV-2 infection. These features may be useful to identify at risk individuals, but also highlight a role for the microbiome in modifying hyperinflammatory responses to SARS-CoV-2 and other infectious agents.


Subject(s)
Coronavirus Infections , Death , COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.29.20203612

ABSTRACT

RationaleThe COVID-19 pandemic induces considerable strain on intensive care unit resources. ObjectivesWe aim to provide early predictions of individual patients intensive care unit length of stay, which might improve resource allocation and patient care during the on-going pandemic. MethodsWe developed a new semiparametric distributional index model depending on covariates which are available within 24h after intensive care unit admission. The model was trained on a large cohort of acute respiratory distress syndrome patients out of the Minimal Dataset of the Swiss Society of Intensive Care Medicine. Then, we predict individual length of stay of patients in the RISC-19-ICU registry. MeasurementsThe RISC-19-ICU Investigators for Switzerland collected data of 557 critically ill patients with COVID-19. Main ResultsThe model gives probabilistically and marginally calibrated predictions which are more informative than the empirical length of stay distribution of the training data. However, marginal calibration was worse after approximately 20 days in the whole cohort and in different subgroups. Long staying COVID-19 patients have shorter length of stay than regular acute respiratory distress syndrome patients. We found differences in LoS with respect to age categories and gender but not in regions of Switzerland with different stress of intensive care unit resources. ConclusionA new probabilistic model permits calibrated and informative probabilistic prediction of LoS of individual patients with COVID-19. Long staying patients could be discovered early. The model may be the basis to simulate stochastic models for bed occupation in intensive care units under different casemix scenarios.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL